
Computer Physics Communications 00 (2015) 1–29

Computer
Physics

Communi-
cations

GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations II:
dynamics and stochastic simulations

Xavier Antoinea,b, Romain Duboscqc

aUniversité de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France
bInria Nancy Grand-Est/IECL-CORIDA, France

cInstitut de Mathématiques de Toulouse, UMR 5219, Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, 31062 Toulouse Cedex 9,
France

Abstract

GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations
that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows [8], is to first present the
various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-
Pitaevskii equations [7]. Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are
provided to show how the code works for the complex dynamics of BEC problems.

c© 2011 Published by Elsevier Ltd.

Keywords: Bose-Einstein condensates, nonlinear Schrödinger equation, Gross-Pitaevskii equation, nonlinear dynamics,
stochastic dynamics, computational schemes, numerical simulation
PACS: 02.60.-x, 02.70.-c, 31.15.-p, 31.15.xf
2010 MSC: 35Q41, 35R60, 81Q05, 65M12, 65M70, 65Z05

Contents

0 Program Summary 2

1 Introduction 2

2 The dimensionless Gross-Pitaevskii equation used in GPELab 3

3 Spectral schemes for the simulation of the dynamics 3
3.1 Alternate Direction Implicit-Time Splitting pseudo SPectral (ADI-TSSP) schemes 3

3.1.1 The Lie ADI-TSSP scheme . 4
3.1.2 The Strang ADI-TSSP scheme . 6
3.1.3 Extension of the TSSP schemes to the multi-components case 7

3.2 Relaxation pseudo SPectral scheme (ReSP) . 8

Email addresses: xavier.antoine@univ-lorraine.fr (Xavier Antoine), Romain.Duboscq@math.univ-toulouse.fr (Romain
Duboscq)

1

/ Computer Physics Communications 00 (2015) 1–29 2

3.2.1 Relaxation pseudo SPectral scheme (ReSP) for the rotating GPE 9
3.2.2 Extension of the ReSP scheme to the multi-components case 10

3.3 Integration of a stochastic potential . 11
3.3.1 The case of the TSSP scheme . 11
3.3.2 The case of the ReSP scheme . 12

4 GPELab functions for the dynamics 12
4.1 The Method Var2d function . 12
4.2 The TimePotential Var2d function . 13
4.3 The StochasticPotential Var2d function . 14
4.4 Further options before launching the simulation . 15

5 Examples of computations 15
5.1 Collision of two bright solitons for a system of GPEs in 1d . 15
5.2 Dynamics of a rotating Bose-Einstein condensate perturbed by a random gaussian potential in 2d . . . 16
5.3 Dynamics of a Rydberg-dressed Bose-Einstein condensate in 2d . 19
5.4 Dynamics of a superfluid with a random initial data in 3d . 23

6 Conclusion 27

0. Program Summary

Manuscript title: GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations II: dynamics and stochastic simu-
lations
Authors: Xavier ANTOINE & Romain DUBOSCQ
Program title: GPELab
Licensing provisions: Standard CPC licence
Programming language: Matlab
Computer(s) for which the program has been designed: PC, Mac
Operating system(s) for which the program has been designed: Windows, Mac OS, Linux
RAM required to execute with typical data: 4000 Megabytes
Has the code been vectorised or parallelized?: Yes
Number of processors used: Most if not all
Keywords: Matlab, Bose-Einstein condensates, Gross-Pitaevskii Equation, Dynamical solution, Splitting schemes,
Relaxation scheme
CPC Library Classification: 2.7, 4.6, 7.7
Nature of problem: Simulation of dynamical solutions for a class of systems (multi-components) of time-dependent
Gross-Pitaevskii equations in 1d, 2d and 3d. This program is particularly well designed for the simulation of the
dynamics of Bose-Einstein condensates as well as the computation of ground states.
Solution method: We use spectral schemes in space and splitting/relaxation scheme in time.
Running time: From a few minutes for simple problems to few hours for more complex situations on a medium com-
puter.

1. Introduction

GPELab1 (Gross-Pitaevskii Equation Laboratory) is an open access Matlab toolbox [8] developed for computing the
stationary states and the nonlinear (deterministic and stochastic) dynamics of 1d-2d-3d Gross-Pitaevskii Equations
(GPEs) [29, 38, 39, 46, 47]. The GPE is widely used for modeling Bose-Einstein Condensates (BECs) [6, 12, 21, 23].

1http://gpelab.math.cnrs.fr/

2

http://gpelab.math.cnrs.fr/

/ Computer Physics Communications 00 (2015) 1–29 3

GPELab can treat complex physics problems including general potentials [31, 32, 35, 54], local and nonlocal (dipole-
dipole) nonlinearities [13, 26, 27, 28, 36, 45], rotation effects [4, 17, 40, 41, 42, 48], stochastic terms [1, 2, 3, 24, 25, 50]
and/or multi-components problems [5, 11, 33, 37, 43, 44, 49, 55, 57]. The idea behind GPELab is to propose to
physicists working on BECs a simple, generic and robust computational tool for modeling a wide class of Bose-
Einstein condensates. GPELab uses pseudospectral approximation techniques [10, 12, 14, 56] which provide highly
accurate spatial solutions compared e.g. with finite difference schemes. In the first paper [8], we introduced the
numerical methods for computing the stationary states of GPEs and the most important functions that are defined in
GPELab. The aim of this second paper is to describe the numerical schemes that are included in GPELab for solving
the nonlinear deterministic and stochastic dynamics of Gross-Pitaevskii equations [1, 2, 3, 10, 24], the associated
GPELab functions and to give in detail some numerical examples.

The paper is organized as follows. After the introduction of the dimensionless GPE (section 2), we describe in
section 3 the numerical spectral schemes (Time Splitting and relaxation schemes) that are used in GPELab for the
discretization of deterministic or stochastic systems of GPEs. The associated functions are described in section 4.
Three numerical examples are fully developed in section 5. Finally, section 6 concludes.

2. The dimensionless Gross-Pitaevskii equation used in GPELab

By using some suitable changes of variables [8, 12], it can be proved that the GPE coming from physics can be
rewritten as a dimensionless GPE in dimension d following

i
∂ψ

∂t
=

(
−

1
2

∆ + Vd + βd |ψ|
2 −ΩLz

)
ψ. (2.1)

The unknown ψ(t, x) is the condensate wave function that depends on the time t > 0 and spatial variable x ∈ Rd.
The operator ∆ is the standard laplacian operator, Vd(= V) is the potential function which is (x, t)-dependent and the
nonlinearity strength is βd(= β). The positive real-valued parameter Ω is the rotation speed and Lz = −i(x∂y − y∂x)
is the rotating operator in the two- and three-dimensional cases. The dimensionless energy functional Eβ,Ω is defined
[8, 15, 17] by

Eβ,Ω(ψ) =

∫
Rd

[
1
2
|∇ψ|2 + V |ψ|2 +

β

2
|ψ|4 −Ωψ∗Lzψ

]
dx, (2.2)

where ψ∗ is the complex conjugate function of ψ. We refer to [8] for more details about the notations, examples of
potentials and nonlinearities that can be defined in GPELab.

3. Spectral schemes for the simulation of the dynamics

3.1. Alternate Direction Implicit-Time Splitting pseudo SPectral (ADI-TSSP) schemes
Let us introduce A and B, two operators such that: D(A) ⊂ L2,D(B) ⊂ L2 and A+B is an operator onD(A)∩D(B).

We designate byD(A) andD(B) the domains of the operators A and B, respectively. We consider the following time-
dependent Partial Differential Equation (PDE){

∂tψ(t, x) = Aψ(t, x) + Bψ(t, x),
ψ(0, x) = ψ0(x),

and denote by ψ(t, x) = e(A+B)tψ0(x) its solution, for all t > 0 and x ∈ Rd. The Time-Splitting (TS) schemes consist in
approximating the solution ψ via a splitting of the exponential operator e(A+B)t involving the operators eAt and eBt. Let
us write

ψ(t + δt, x) = e(A+B)δtψ(t, x) ≈ ea1Aδteb1Bδtea2Aδteb2Bδt...eapAδtebpBδtψ(t, x),

where {ak, bk}1≤k≤p ⊂ R are weights that are computed to get an approximation of e(A+B)δt of a given order for a time
step δt � 1 and t ∈ R+ := {t > 0}. The most commonly used time-splitting schemes are the Lie (a1 = b1 = 1)
(see subsection 3.1.1) and the Strang (a1 = a2 = 1/2 and b1 = 1, b2 = 0) (see subsection 3.1.2) schemes. They
are respectively of order one and two. Higher-order schemes [18, 53] can be constructed with appropriately chosen

3

/ Computer Physics Communications 00 (2015) 1–29 4

weights {ak, bk}1≤k≤p. The motivation behind the splitting schemes lies in the fact that the equations associated to the
operators A and B can be efficiently solved. In GPELab, the standard decomposition [16, 19]

A =
i
2

∆ + iΩLz, B = −iV(t, x) − iβ|ψ(t, x)|2,

is used. As seen later, the PDE associated to A can be solved by using an Alternate Direction Implicit method and
Fast Fourier Transforms (FFTs) [19]. In addition, the ODE related to the nonlinearity and the potential parts can be
integrated exactly.

3.1.1. The Lie ADI-TSSP scheme
Lie scheme. The Lie splitting scheme uses the following approximation

ψ(t + δt, x) ≈ ei(1/2∆+ΩLz)δte−i(V(t,x)+β|ψ|2)δtψ(t, x). (3.3)

For an initial data ψ0 = ψ(0, x) ∈ L2(Rd), we want to numerically solve (2.1) on the time interval [0,T] (T > 0) which
is uniformly discretized. We assume that: Nδt = T , with N ∈ N and δt > 0. For 0 ≤ n ≤ N and tn = nδt, the Lie
scheme leads to the two-steps method

1) First, compute the solution ψ1 to the PDE i∂tψ1(t, x) = −
1
2

∆ψ1(t, x) −ΩLzψ1(t, x), tn < t ≤ tn+1, ∀x ∈ Rd,

ψ1(tn, ·) = ψn.
(3.4)

2) Next, determine ψ2 solution to the ODE i∂tψ2(t, x) = V(t, x)ψ2(t, x) + β|ψ2(t, x)|2ψ2(t, x), tn < t ≤ tn+1, ∀x ∈ Rd,

ψ2(tn, ·) = ψ1(tn+1, ·).
(3.5)

Finally, we set: ψn+1 := ψ2(tn+1, ·), which is an approximation of ψ(tn+1, ·).
Time discretization and the ADI technique. To simplify the presentation, we consider the two-dimensional case

(x = (x, y) ∈ R2) (but the 1d and 3d cases can be easily deduced). For a non rotating BEC (Ω = 0), Eq. (3.4) can
be efficiently solved by inverting the Laplacian operator through FFTs. For Ω , 0, we cannot proceed in the same
way since the operator Lz = i(y∂x − x∂y) is not diagonal in the Fourier space. In [19], Bao et al. propose to use an
ADI method to avoid this problem. This basic idea consists in splitting the derivative operators with respect to each
direction into successive equations. This allows the use of one-dimensional FFTs for solving each equation. Finally,
equation (3.4) is decomposed into the two following steps

1.a) first, find ψ(1) such that i∂tψ
(1)(t, x) = −

1
2
∂xxψ

(1)(t, x) − iΩy∂xψ
(1)(t, x), tn < t ≤ tn+1, ∀x ∈ R2,

ψ(1)(tn, ·) = ψn(·),
(3.6)

1.b) and then, compute ψ(2) as the solution to the equation i∂tψ
(2)(t, x) = −

1
2
∂yyψ

(2)(t, x) + iΩx∂yψ
(2)(t, x), tn < t ≤ tn+1, ∀x ∈ R2,

ψ(2)(tn, ·) = ψ(1)(tn+1, ·).
(3.7)

Next, Eq. (3.5) requires to solve the following ODE{
i∂tψ

(3)(t, x) = V(t, x)ψ(3)(t, x) + β|ψ(3)(t, x)|2ψ(3)(t, x), tn < t ≤ tn+1, ∀x ∈ R2,
ψ(3)(tn, x) = ψ(2)(tn+1, x),

(3.8)

4

/ Computer Physics Communications 00 (2015) 1–29 5

whose solution is
ψ(3)(t, x) = ψ(2)(tn+1, x)e−iβ|ψ(2)(tn+1,x)|2(t−tn)−i

∫ t
tn

V(s,x)ds, (3.9)

which finally gives: ψn+1(x) ≈ ψ(3)(tn+1, x).
The ADI technique implies a loss of symmetry of the scheme when solving the partial differential operators of Eq.

(3.4). Indeed, we first integrate in the x-direction in (3.6) and next in the y-direction according to (3.7). To symmetrize
the scheme, we alternate the ordering of the derivative directions any two time steps. Concretely, from tn to tn+1, (3.6)
is solved and next equation (3.7) followed by (3.8). From tn+1 to tn+2, (3.7) is first solved, then equation (3.6) and
finally again Eq. (3.8).

Space discretization in 2d and implementation. GPELab considers an approach based on Fourier series represen-
tations through FFTs [8]. Periodic boundary conditions are set on the fictitious boundary of a large enough finite com-
putational box: O :=] − ax; ax[×] − ay; ay[. Let us introduce: PJ,K =

{
(j, k) ∈ N2; 0 ≤ j ≤ J − 1 and 0 ≤ k ≤ K − 1

}
,

with J,K ≥ 2, and two uniform discretization steps hx and hy in the x- and y-directions, respectively. The partial
Fourier pseudospectral discretizations in the x- and y-directions are respectively given by

ψ(t, x j, yk) =
1
J

J/2−1∑
p=−J/2

ψ̂p(t, yk)eiµp(x j+ax), ψ(t, x j, yk) =
1
K

K/2−1∑
q=−K/2

ψ̂q(t, x j)eiλq(yk+ay), (3.10)

∀t ∈ R+ and ∀(j, k) ∈ PJ,K and where

ψ̂p(t, yk) =

J−1∑
j=0

ψ(t, x j, yk)e−iµp(x j+ax), ψ̂q(t, x j) =

K−1∑
k=0

ψ(t, x j, yk)e−iλq(yk+ay), (3.11)

with µp =
πp
ax

and λq =
πq
ax

. By using (3.10) and (3.11), the partial differential operators in the x- and y-directions are
discretized as

∀(j, k) ∈ PJ,K , ∂xψ(t, x j, yk) ≈
1
J

J/2−1∑
p=−J/2

iµpψ̂p(t, yk)eiµp(x j+ax), ∂yψ(t, x j, yk) ≈
1
K

K/2−1∑
q=−K/2

iλqψ̂q(t, x j)eiλq(yk+ay).

Thus, ∀t ∈ [tn, tn+1], 0 ≤ k ≤ K − 1 and 1 − J/2 ≤ p ≤ J/2,we obtain

i∂tψ̂
(1)
p (t, yk) =

(
1
2
µ2

p + Ωyµp

)
ψ̂(1)

p (t, yk).

This ODE can be exactly integrated in time

∀t ∈ [tn, tn+1], ψ̂(1)
p (t, yk) = e−i(1

2 µ
2
p+Ωyµp)(t−tn)ψ̂(1)

p (tn, yk).

Similarly, for Eq. (3.7), one gets

1 − K/2 ≤ q ≤ K/2, ψ̂(2)
q (t, x j) = e−i(1

2 λ
2
q−Ωxλq)(t−tn)ψ̂(2)

q (tn, x j).

Thus, the first steps 1.a)-1.b) for solving Eqs. (3.6)-(3.7) on [tn, tn+1] and for the spatial grid (x j, yk)(j,k)∈PJ,K express as

ψ(1)(tn+1, x j, yk) =
1
J

J/2−1∑
p=−J/2

e−i(1
2 µ

2
p+Ωykµp)δt ψ̂n

p(yk)eiµp(x j+Lx),

ψ(2)(tn+1, x j, yk) =
1
K

K/2−1∑
q=−K/2

e−i(1
2 λ

2
q−Ωx jλq)δt ψ̂(1)

q (tn+1, x j)eiλq(yk+Ly).

In GPELab, these operations are based on the fft() and ifft() Matlab functions. Moreover, the exponential
matrix is computed by the usual exponential Matlab function. The discretization of (3.9) uses the standard Simpson’s
quadrature rule∫ tn+1

tn
V(s, x j, yk)ds ≈

1
6

(
V(tn, x j, yk) + 4V

(
tn+1/2, x j, yk

)
+ V(tn+1, x j, yk)

)
(tn+1 − tn) := Ṽn(x j, yk)δt,

5

/ Computer Physics Communications 00 (2015) 1–29 6

with tn+1/2 = (tn + tn+1)/2, leading to

ψ(3)(tn+1, x j, yk) = ψ(2)(tn+1, x j, yk)e−i(β|ψ(2)(tn+1,x j,yk)|2+Ṽn(x j,yk))δt.

This corresponds to a phase shift of the solution. Let us also remark that everything extend to a general nonlinearity
f (|ψ|, x). This scheme, which is called Lie ADI-TSSP scheme, is globally first-order in time and spectrally accurate
in space. The computational cost is O(M log M), setting M = JK.

3.1.2. The Strang ADI-TSSP scheme
We now briefly explain the Strang ADI-TSSP scheme since its derivation is similar to the Lie ADI-TSSP scheme.

For a time step δt, the approximation of the solution ψ is either

ψ(t + δt, x) ≈ e−i(V(t,x)+β|ψ|2)δt/2ei(1/2∆+ΩLz)δte−i(V(t,x)+β|ψ|2)δt/2ψ(t, x),

or
ψ(t + δt, x) ≈ ei(1/2∆+ΩLz)δt/2e−i(V(t,x)+β|ψ|2)δtei(1/2∆+ΩLz)δt/2ψ(t, x).

Here, we consider the second formulation. Indeed, in this case, the symmetrization of the method can be directly done
on a single step by changing the direction of the third exponential operator to the first one while this is not possible
for the second formulation. The resulting Strang ADI-TSSP scheme is given by the successive operations

1) Solve the equation i∂tψ
(1)(t, x) = −

1
2
∂xxψ

(1)(t, x) − iΩy∂xψ
(1)(t, x), tn < t ≤ tn+1/2, ∀x ∈ R2,

ψ(1)(tn, ·) = ψn(·).
(3.12)

2) Find ψ(2) such that i∂tψ
(2)(t, x) = −

1
2
∂yyψ

(2)(t, x) + iΩx∂yψ
(2)(t, x), tn < t ≤ tn+1/2, ∀x ∈ R2,

ψ(2)(tn, ·) = ψ(1)(tn+1/2, ·).
(3.13)

3) Determine ψ(3) which solves{
i∂tψ

(3)(t, x) = V(t, x)ψ(3)(t, x) + β|ψ(3)(t, x)|2ψ(3)(t, x), tn < t ≤ tn+1, ∀x ∈ R2,
ψ(3)(tn, ·) = ψ(2)(tn+1/2, ·).

(3.14)

4) Compute the solution ψ(4) of the equation i∂tψ
(4)(t, x) = −

1
2
∂yyψ

(4)(t, x) + iΩx∂yψ
(4)(t, x), tn+1/2 < t ≤ tn+1, ∀x ∈ R2,

ψ(4)(tn+1/2, ·) = ψ(3)(tn+1, ·).
(3.15)

5) Finally, obtain the solution ψ(5) of the equation i∂tψ
(5)(t, x) = −

1
2
∂xxψ

(5)(t, x) − iΩy∂xψ
(5)(t, x), tn+1/2 < t ≤ tn+1, ∀x ∈ R2,

ψ(5)(tn+1/2, x) = ψ(4)(tn+1, x).
(3.16)

This last step finally gives ψn+1(x) := ψ(5)(tn+1/2, x). Each PDE with respect to x or y is solved through FFTs and
iFFTs.

The Strang ADI-TSSP scheme is second-order in time and spectrally accurate in space for a computational cost
O(M log M). The extensions to the 1d-3d cases are straightforward. Some interesting properties are related to the fact
that these schemes are time reversible, mass conserving, time transverse invariant and the dispersion relation holds
[7]. Unfortunately, the energy is not exactly conserved (for example when Ω = 0) [7]. Finally, the Lie and Strang
ADI-TSSP schemes are unconditionally stable.

6

/ Computer Physics Communications 00 (2015) 1–29 7

3.1.3. Extension of the TSSP schemes to the multi-components case
The TSSP schemes can be extended to the multi-components case [11, 57], i.e. a system of Nc coupled GPEs. For

x := (x1, ..., xd) ∈ Rd and with Nc ∈ N∗, we denote by Ψ = (ψ1, ..., ψNc) a vector of Nc wave functions solution to the
following system of GPEs

i∂tΨ(t, x) = −
1
2

∆Ψ(t, x) + V(t, x)Ψ(t, x) +

d∑
j=1

G j(x\x j)∂x jΨ(t, x) + βF(Ψ, x)Ψ(t, x), t > 0, x ∈ Rd, (3.17)

where we set x\x j = (x1, ..., x j−1, x j+1, ..., xd). Concerning the definition of the operators occurring in the previous
equation, we refer to [8]. We furthermore assume that V and F are two symmetric operators to get the mass conser-
vation property

N(Ψ) :=
Nc∑
j=1

N(ψ j) =

Nc∑
j=1

∫
Rd
|ψ j(t, x)|2dx =

Nc∑
j=1

∫
Rd
|ψ j(0, x)|2dx = ‖Ψ‖20 = 1,

that is, we suppose that V`,m = Vm,` and F`,m = Fm,`, 1 ≤ `,m ≤ Nc. For the TSSP schemes included in GPELab, we
assume that F only depends on the amplitude of Ψ, i.e. F(Ψ, x) := F(|Ψ|, x), where we define |Ψ| = (

∑Nc
j=1 |ψ j|

2)1/2. Let
us note that an important point here is that we suppose that the variable coefficients matrices in front of the gradients
have the following expressions

G j(x\x j) =


G j

11(x\x j) G j
12(x\x j) · · · G j

1Nc
(x\x j)

G j
21(x\x j) G j

22(x\x j) · · · G j
2Nc

(x\x j)
...

...
. . .

...

G j
Nc1(x\x j) G j

Nc2(x\x j) · · · G j
NcNc

(x\x j)

 .

The initial data is Ψ(t = 0, x) = Ψ0(x) and therefore: Ψ0(x) := Ψ0(x). If Ψn designates the approximation of the
solution at tn, then the Lie TSSP scheme yields the two successive steps

1) First, solve the equation
i∂tΨ

(1)(t, x) = −
1
2

∆Ψ(1)(t, x) +

d∑
j=1

G j(x\x j)∂x jΨ
(1)(t, x), tn < t ≤ tn+1,∀x ∈ Rd,

Ψ(1)(tn, ·) = Ψn(·).

(3.18)

2) Next, determine the solution to{
i∂tΨ

(2)(t, x) = V(t, x)Ψ(2)(t, x) + βF(|Ψ(2)|, x)Ψ(2)(t, x), tn < t ≤ tn+1,∀x ∈ Rd,
Ψ(2)(tn, ·) = Ψ(1)(tn+1, ·).

(3.19)

Finally, we set: Ψn+1(·) := Ψ(2)(tn+1, ·). Thanks to the assumptions on the potential and the nonlinear operators, we
remark that the solution to (3.19) has a modulus which is conserved.

Lemma 1. For every t in [tn, tn+1], we have: |Ψ(2)(t, x)| = |Ψ(2)(tn, x)|.

Proof. First, we can write that

Nc∑
m=1

∂t |Ψ
(2)
m (t, x)|2 = 2

Nc∑
m=1

<
(
Ψ(2)

m (t, x)∗∂tΨ
(2)
m (t, x)

)
= −2

Nc∑
m,o=1

=
(
Ψ(2)

m (t, x)∗(Vmo(t, x) + Fmo(|Ψ(2)(t, x)|, x))Ψ(2)
o (t, x)

)
.

7

/ Computer Physics Communications 00 (2015) 1–29 8

By using Vmo(t, x) = Vom(t, x) and Fmo(|Ψ(2)(t, x)|, x) = Fom(|Ψ(2)(t, x)|, x), we obtain

Nc∑
m=1

∂t |Ψ
(2)
m (t, x)|2 =

−2
∑

Nc≥o>m≥1

=
(
(Vmo(t, x) + Fmo(|Ψ(2)(t, x)|, x))(Ψ(2)

m (t, x)∗Ψ(2)
o (t, x) + Ψ(2)

o (t, x)∗Ψ(2)
m (t, x))

)
−2

∑
Nc≥m≥1

=
(
(Vmm(t, x) + Fmm(|Ψ(2)(t, x)|, x))|Ψ(2)

m (t, x)|2
)

= −4
∑

Nc≥o>m≥1

=
(
(Vmo(t, x) + Fmo(|Ψ(2)(t, x)|, x))<(Ψ(2)

m (t, x)∗Ψ(2)
o (t, x))

)
= 0.

(3.20)

This concludes the proof.

Let us explicitly write the method in the 2d case for a system of Gross-Pitaevskii equations. A first step is to solve
the following equation

i∂tΨ
(1)(t, x) = −

1
2

∆Ψ(1)(t, x) +

2∑
j=1

G j(x\x j)∂x jΨ
(1)(t, x), tn < t ≤ tn+1,∀x ∈ R2,

Ψ(1)(tn, ·) = Ψn(·).

(3.21)

As in the one-component case, an ADI method must be used to decouple the effects of the operators G j(x\x j)∂x j in
each direction. Therefore, we split Eq. (3.21) in two equations and we simply need to compute the solution of the
equation  i∂tΨ

(1,1)(t, x) = −
1
2
∂xxΨ

(1,1)(t, x) + G1(y)∂xΨ
(1,1)(t, x), tn < t ≤ tn+1,∀x ∈ R2,

Ψ(1,1)(tn, ·) = Ψn(·),
(3.22)

then determine Ψ(1,2) such that i∂tΨ
(1,2)(t, x) = −

1
2
∂yyΨ

(1,2)(t, x) + G2(x)∂yΨ
(1,2)(t, x), tn < t ≤ tn+1,∀x ∈ R2,

Ψ(1,2)(tn, ·) = Ψ(1,1)(tn+1, ·).
(3.23)

A second step is to solve Eq. (3.19) for a well-chosen initial data{
i∂tΨ

(2)(t, x) = V(t, x)Ψ(2)(t, x) + βF(|Ψ(2)(t, x)|, x)Ψ(2)(t, x), tn < t ≤ tn+1,∀x ∈ R2,
Ψ(2)(tn, ·) = Ψ(1,2)(tn+1, ·).

(3.24)

Thanks to Lemma 1, the solution is given by

Ψ(2)(t, x) = e−iβF(|Ψ(1,2)(tn+1,x)|,x)(t−tn)−ired
∫ t

tn
V(s,x)ds

Ψ(1,2)(tn+1, x). (3.25)

This finally gives the approximation: Ψn+1(x) ≈ Ψ(2)(tn+1, x). Let us remark that we have to compute the exponential
of a matrix to effectively evaluate (3.25) and that we use, as in the single-component case, Simpson’s quadrature rule
to numerically evaluate the time integration of the potential. For the full approximation, we adapt to each component
the spectral approximation based on fft and ifft in space. For both the Lie and Strang schemes, the spectral
approximation is written under a symmetrical form as for the one-component case.

3.2. Relaxation pseudo SPectral scheme (ReSP)

Introduced by Besse in [20], the relaxation scheme is inspired by the Crank-Nicolson scheme but without solving
a nonlinear equation (through a fixed point or a Newton-Raphson method). This dramatically reduces the computa-
tional cost of the scheme without loosing the second-order accuracy in time, unconditional stability and mass/energy
conservation [7].

8

/ Computer Physics Communications 00 (2015) 1–29 9

3.2.1. Relaxation pseudo SPectral scheme (ReSP) for the rotating GPE
The relaxation scheme applied to equation (2.1) is given by

φn+1/2 + φn−1/2

2
= β|ψn|2,

i
ψn+1 − ψn

δt
= (−

1
2

∆ −ΩLz + φn+1/2)
(
ψn+1 + ψn

2

)
+

Vn+1ψn+1 + Vnψn

2
,

(3.26)

where φn+1/2 = φ(tn+1/2, x), ψn = ψ(tn, x), Vn = V(tn, x) and the initial conditions are ψ0 = ψ0 and φ−1/2 = β|ψ0|
2. The

extension to a general nonlinearity is direct.
We now have to discretize the operator −∆ − ΩLz. To this end, we use the pseudospectral approximation of the

spatial derivatives based on the Fourier series expansions (3.10)-(3.11) (see [8]). By denoting [[A]] the discretized
operator A in related to the pseudo-spectral approximation, we have the following discretization{

[[φn+1/2]] = 2β[[|ψn|2]] − [[φn−1/2]],
ARe,nψn+1 = bRe,n,

(3.27)

where ψn+1 = (ψn+1(x j,k))(j,k)∈PJ,K is a discrete unknown array inMM(C) and x j,k = (x j, yk). Here,MM(C) designates
the set of complex-valued 2d (respectively 1d and 3d) arrays, with M = JK (respectively M = J and M = JKL) in
2d (respectively 1d and 3d). For conciseness, let us remark that we do not make any distinction between an array φ in
MM(C) and the corresponding reshaped vector in CM . The operator ARe,n is a map fromMM(C) to itself such that

ARe,n :=
(
i
[[I]]
δt

+
1
4

[[∆]] −
1
2

[[Vn+1]] −
1
2

[[φn+1/2]] +
1
2

Ω[[Lz]]
)
. (3.28)

Moreover, the vector bRe,n is given by

bRe,n :=
(
i
[[I]]
δt
−

1
4

[[∆]] +
1
2

[[Vn]] +
1
2

[[φn+1/2]] −
1
2

Ω[[Lz]]
)
ψn. (3.29)

The application of the operator ARe,n and the evaluation of the vector bRe,n are realized by applying the discretized
operators. For the identity, the potential and the nonlinear operators, the application is direct since it is done pointwise
in the physical space by setting

∀(j, k) ∈ PJ,K , [[I]] j,k := δ j,k, [[V]] j,k := V(x j,k), [[|ψn|2]] j,k = |ψn(x j,k)|2. (3.30)

The symbol δ j,k denotes the Dirac delta symbol which is equal to 1 if and only if j = k and 0 otherwise. By using
(3.10) and (3.11), the partial differential operators in the x- and y-directions are discretized as

∀(j, k) ∈ PJ,K , ([[∂x]]ψ) j,k =
1
J

J/2−1∑
p=−J/2

iµpψ̂p(yk, t)eiµp(x j+ax), ([[∂y]]ψ) j,k =
1
K

K/2−1∑
q=−K/2

iλqψ̂q(xk, t)eiλq(yk+ay),

leading to the following pseudospectral approximation of the operator Lz

∀(j, k) ∈ PJ,K , ([[Lz]]ψ) j,k = −i
(
x j([[∂y]]ψ) j,k − yk([[∂x]]ψ) j,k

)
. (3.31)

The discrete second-order differential operators in the x- or y-directions are obtained through

∀(j, k) ∈ PJ,K , ([[∂2
x]]ψ) j,k =

1
J

J/2−1∑
p=−J/2

−µ2
pψ̂p(yk, t)eiµp(x j+ax), ([[∂2

y]]ψ) j,k =
1
K

K/2−1∑
q=−K/2

−λ2
qψ̂q(xk, t)eiλq(yk+ay),

yielding the discrete Laplace operator ∆ defined by

([[∆]]ψ) j,k =
(
[[∂2

x]]ψ + [[∂2
y]]ψ

)
j,k
. (3.32)

9

/ Computer Physics Communications 00 (2015) 1–29 10

We remark that the operator [[∆]] is diagonal in the Fourier space but not [[Lz]]. The evaluation of a partial differential
operator is made through FFT/iFFTs while the diagonal matrices in the physical space are directly applied. The linear
system in (3.27) is solved at each time step by the BiCGStab or GMRES Krylov subspace solvers. In the spirit of
[8, 9], an analytical (Thomas-Fermi (TF) or Laplace-like [8]) preconditioner is used to accelerate the convergence of
the iterative Krylov subspace solvers. Let us remark here that, unlike the stationary state case [8], the preconditioned
iterative solvers converge very fast and require a few iterations, even when large β and Ω and high spatial/time accuracy
are considered. A few examples are reported in [22] (pages 172-173).

The resulting scheme is called Relaxation pseudo SPectral scheme (ReSP). The scheme is second-order in time
and spectrally accurate in space. Its computational cost is O(M log M). The extension to the three-dimensional case
and other nonlinearities is direct in terms of coding. Other properties are related to the fact that it is time reversible,
mass and energy (for a cubic nonlinearity) conserving when the property holds at the continuous level. It is not time
transverse invariant and the dispersion relation is not satisfied. The scheme is unconditionally stable (see [7] for more
details).

3.2.2. Extension of the ReSP scheme to the multi-components case
The relaxation scheme can be extended to the multi-components situation in a similar way as in [8]. We consider

the same notations as in section 3.1.3. We have the following time discretization of system (3.17) based on the
relaxation scheme (for a general nonlinearity)

Φn+1/2 + Φn−1/2

2
= βF(Ψn),

Ψn+1 − Ψn

δt
= −i

−1
2

∆ +

d∑
j=1

G j∂x j + Φn+1/2

 Ψn+1 + Ψn

2
+

Vn+1Ψn+1 + VnΨn

2
,

for any n ≥ 0. Concerning the spatial discretization, we use again a pseudo spectral method based on the FFTs/iFFTs.
For the 2d case, the ReSP scheme reads{

[[Φn+1/2]] = 2β[[F(Ψn)]] − [[Φn−1/2]],
ARe,nΨn+1 = BRe,n,

(3.33)

where Ψn = ((ψn
1(x j,k))(j,k)∈PJ,K , ..., (ψ

n
Nc

(x j,k))(j,k)∈PJ,K) is the discrete unknown array in CMNc , with M := JK. The
relaxation operator [[Φn+1/2]] ∈ MMNc (C) is updated by computing the nonlinear operator

[[F(Ψn)]] :=


[[F11(Ψn)]] [[F12(Ψn)]] · · · [[F1Nc (Ψ

n)]]
[[F21(Ψn)]] [[F22(Ψn)]] · · · [[F2Nc (Ψ

n)]]
...

...
. . .

...
[[FNc1(Ψn)]] [[F2Nc (Ψ

n)]] · · · [[FNcNc (Ψ
n)]]

 ,
setting [[F`m(Ψn)]] = (F`m(Ψn(x j,k)))(j,k)∈OJ,K , 1 ≤ `,m ≤ Nc. To be consistent with the one-component case, we
consider: [[Φ−1/2]] = β[[F(Ψ0(x))]]. The operator ARe,n ∈ MMNc (C) is defined by

ARe,n :=
(
i
[[INc]]
δt

+
1
4

[[∆]] −
1
2

[[G1]][[∂x]] −
1
2

[[G2]][[∂y]] −
1
2

[[Vn+1]] −
1
2

[[Φn+1/2]]
)
. (3.34)

The vector bRe,n is

bRe,n :=
(
i
[[INc]]
δt

−
1
4

[[∆]] +
1
2

[[G1]][[∂x]] +
1
2

[[G2]][[∂y]] +
1
2

[[Vn]] +
1
2

[[Φn+1/2]]
)
Ψn. (3.35)

The identity and potential operators are explicitly given by the matrices

[[INc]] :=


[[I]] 0 · · · 0

0 [[I]] · · · 0
...

...
. . .

...
0 0 · · · [[I]]

 ∈ MMNc (R) and [[Vn]] :=


[[Vn

11]] [[Vn
12]] · · · [[Vn

1Nc
]]

[[Vn
21]] [[Vn

22]] · · · [[Vn
2Nc

]]
...

...
. . .

...
[[Vn

Nc1]] [[Vn
2Nc

]] · · · [[Vn
NcNc

]]

 ∈ MMNc (R),

10

/ Computer Physics Communications 00 (2015) 1–29 11

where the diagonal matrices are defined by: [[I]]`m = (δ j,k)(j,k)∈OJ,K ∈ MM(R) and [[Vn
`m]] = (V`m(tn, x j,k))(j,k)∈OJ,K

∈ MM(R). In (3.34) and (3.35) , we also have: [[∆]]Ψ := ([[∆ψ`]])`=1,...,Nc
∈ CMNc , and

[[∂x]]Ψ := ([[∂xψ`]])`=1,...,Nc
∈ CMNc , [[∂y]]Ψ :=

(
[[∂yψ`]]

)
`=1,...,Nc

∈ CMNc . (3.36)

For k = 1, 2, we define

[[Gk]] :=


[[Gk

11]] [[Gk
12]] · · · [[Gk

1Nc
]]

[[Gk
21]] [[Gk

22]] · · · [[Gk
2Nc

]]
...

...
. . .

...
[[Gk

Nc1]] [[Gk
2Nc

]] · · · [[Gk
NcNc

]]

 ∈ MMNc (C),

setting [[Gk
`m]] = (Gk

`m(x j,k))(j,k)∈OJ,K ∈ MM(C).
For solving the second equation of (3.33), we again use the preconditioned BiCGStab or GMRES. Concerning the

Thomas-Fermi (TF)-like preconditioner, since we have some coupling effects between the gazes through [[Vn+1]] and
[[Φn+1/2]], the preconditioner is not diagonal. In GPELab, we propose to only keep the diagonal part for precondition-
ing, that is, to include the potential and nonlinear self-interactions in each gas but neglecting the exchanges between
the gazes (the extra-diagonal blocks of the TF approximation are set to zero). Concretely, we build the following
diagonal TF preconditioner PRe,n

TF,diag given by

PRe,n
TF,diag :=

(
i
[[INc]]
δt

−
1
2

[[Vn+1]]diag −
1
2

[[Φn+1/2]]diag

)−1

,

where [[Vn+1]]diag := ([[Vn+1
``]])`=1,...,Nc and [[Φn+1/2]]diag := ([[Φn+1/2]]``)`=1,...,Nc . We can also consider the Laplace

preconditioner PRe
∆

which is built by inverting the laplacian in the Fourier space

PRe
∆ :=

(
i
[[INc]]
δt

+
1
4

[[∆]]
)−1

.

3.3. Integration of a stochastic potential
GPELab offers the possibility of integrating a stochastic time-dependent potential in the GPE

V(t, x) = V(x)ẇt,

where (ẇt)t≥0 is a noise, i.e. the formal time derivative of a stochastic process (wt)t≥0 ∈ C
γ(R+), with γ ∈]0, 1[. Let

us explain how this class of potentials is discretized in the TSSP and ReSP schemes for the one-component case. The
extension to the multi-components case is also available in GPELab, but, for the sake of brevity, not detailed below.

3.3.1. The case of the TSSP scheme
In the TSSP scheme, we essentially split the equation in two equations that we solve separately. In particular, the

second step (see Eq. (3.5)) consists now in solving{
i∂tψ2(t, x) = V(ẇ(t), x)ψ2(t, x) + β|ψ2|

2ψ2(t, x), tn < t ≤ tn+1,∀x ∈ R2,
ψ2(tn, ·) = ψ1(tn+1, ·).

(3.37)

We have seen in section 3.1.1 that we can exactly integrate the nonlinearity and the time-dependent potential for the
deterministic case. Here, we obtain

tn < t ≤ tn+1, ψ2(t, x) = ψ1(tn+1, x)e−iβ|ψ1(tn+1,x)|2(t−tn)−i
∫ t

tn
V(x)ẇsds.

Since the time integration of the stochastic potential gives∫ t

tn
V(x)ẇsds = V(x)(wt − wtn),

one gets
∀t ∈ [tn, tn+1], ψ2(t, x) = ψ1(tn+1, x)e−iβ|ψ1(tn+1,x)|2(t−tn)−iV(x)(wt−wtn).

11

/ Computer Physics Communications 00 (2015) 1–29 12

3.3.2. The case of the ReSP scheme
For the ReSP, we have to discretize the noise. To this end, we use the scheme∫ tn+1

tn
V(x)ψ(s, x)ẇsds = V(x)

∫ tn+1

tn
ψ(s, x)ẇsds ≈ V(x)

ψ(tn+1, x) + ψ(tn, x)
2

(wtn+1 − wtn).

This leads to the ReSP scheme for the stochastic GPE
φn+1/2 + φn−1/2

2
= β|ψn|2,

i
ψn+1 − ψn

δt
= (−

1
2

∆ −ΩLz + Vn)
(
ψn+1 + ψn

2

)
+ φn+1/2

(
ψn+1 + ψn

2

)
,

(3.38)

where φn+1/2 = φ(tn+1/2, x), ψn = ψ(tn, x) and Vn = V (x)
(wtn+1−wtn

δt

)
.

4. GPELab functions for the dynamics

In [8], we presented the GPELab functions for computing the ground states of the GPE. In a similar way, functions
are built for the dynamics. Compared to the stationary states computation, the numerical simulation of the dynam-
ics remains close in terms of coding. This is first realized by using the Method Vard2d and Geometry2D Var2d

functions. The Geometry2D Var2d function is used in the same way as for stationary states [8]. Calling the
Method Var2d function is also similar but we nevertheless precise here the specific arguments for the dynamics.
To avoid too much details, we refer to [8] for the various notations and an introduction to GPELab (section 7).

4.1. The Method Var2d function

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time, Stop crit,

Max iter, Precond type, Output, Splitting, BESP, Solver FD, Iterative tol,

Iterative maxit);

Table 1. The Method Var2d function.

The Method Var2d function creates the Method structure that contains all the parameters relative to the method
(see [8] section 7.2.1 for the stationary case). Here, we specify the optional arguments for the dynamics

• Computation (S,’Dynamic’) is a variable that must be ’Dynamic’ to compute the dynamic of the GPE (it can
also be set to ’Ground’ for computing stationary states).

• Ncomponents (N,1) is a variable corresponding to the number of components of the condensate.

• Type (S, ’Splitting’) is a variable which precises the scheme that is used in the simulation. In the case of a
dynamical computation, it must be either ’Splitting’ for a TSSP scheme (see section 3.1) or ’Relaxation’
for the ReSP scheme (see section 3.2).

• Deltat (R+,1e-3) is the uniform time step.

• Stop time (R+,1) is a variable that defines the final time of computation for the dynamics. The total number
of time iterations is therefore

#Iter = Int[[
Stop time

Deltat
]],

where Int[[·]] denotes the integer part function.

• Stop crit (R+,1e-8) is a variable fixing the stopping criterion for the ground state computation [8].

• Max iter (N, 1e6) is a variable corresponding to the maximum number of iterations for a stationary state
computation.

12

/ Computer Physics Communications 00 (2015) 1–29 13

• Preconditioner (S,’FLaplace’) is a variable that must be either ’None’ for a calculation without pre-
conditioner, ’Laplace’ for the Laplace preconditioner, ’ThomasFermi’ for the Thomas-Fermi precondi-
tioner, ’FThomasFermi’ for a multi-components Thomas-Fermi preconditioner and ’FLaplace’ for a multi-
components Laplace preconditioner.

• Output (N,1) is a variable equals to 1 if one computes some outputs during the simulation or 0 otherwise.

• Splitting (S,’Strang’) is a variable with the value ’Lie’ for the Lie TSSP scheme, ’Strang’ for the
Strang TSSP scheme (see Section 3.1) or ’Fourth’ for a fourth-order TSSP scheme [12].

• BESP (N,0) is a variable that must be either 1 if one uses a fixed-point Jacobi method or 0 for the Krylov method
when using the BESP spectral scheme [8] (stationary case).

• Solver FD (N,0) is a variable equal to 1 when using a direct Gauss solver or 0 for the Krylov subspace method
when a finite difference scheme (in space) is used [8] (stationary states).

• Iterative tol (R+, 1e-9) is a variable that fixes the residual stopping criterion in the Krylov subspace solver.

• Iterative maxit (N,1e3) is a variable that corresponds to the maximum number of iterations for the Krylov
subspace solver.

Let us consider for example that we want to compute the time-dependent solution of a single-component BEC by
using a TSSP scheme. We fix: δt = 10−3 and a final time of computation T = 1. Moreover, we require that some
outputs are calculated during the simulation. The resulting GPELab code is given in Table 2. (We remark that adding
the preconditioner as ’Laplace’ does not change anything in the simulation since we use a (explicit) TSSP scheme.)

Computation = ’Dynamic;

Ncomponents = 1;

Type = ’Splitting’;

Deltat = 1e-3;

Stop time = 1;

Stop crit = [];

Max iter = [];

Precond type = ’Laplace’;

Output = 1;

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time, Stop crit,

Max iter, Precond type, Output);

Table 2. An example of initialization and use of the Method Var2d function.

To set the physical problem, we need to define the operators involved in the GPE similarly to [8]. For the sake of
completeness, we only list in sections 4.2 and 4.3 the physical operators which are specific to the dynamics.

4.2. The TimePotential Var2d function

Physics2D = TimePotential Var2d(Method, Physics2D, TimePotential, G);

Table 3. The TimePotential Var2d function.

GPELab, through the TimePotential Var2d function, allows to define a time-dependent potential operator (i.e.
V(t, x)) in the problem by modifying the Physics2D structure. It must be provided with the Method and Physics2D

structures and takes the following optional arguments

13

/ Computer Physics Communications 00 (2015) 1–29 14

• TimePotential: If a function TimePotential in F(R+,MNy,Nx (R)2;MNy,Nx (C)) is provided, the physical
time-dependent potential is defined as follows, for each j, k ∈ {1, ...,Nc},

V j,k(t, x, y) =

{
TimePotential(t, x, y) if j = k
0 if j , k .

If TimePotential is a cell array of functions in

CNc,Nc {F(R+,MNy,Nx (R)2;MNy,Nx (C))},

then the potential is
V j,k(t, x, y) = TimePotential{ j, k}(t, x, y)

for j, k ∈ {1, ...,Nc}. The default argument is quadratic potential2d which corresponds to

V j,k(t, x, y) =

{ 1
2 (x2 + y2) if j = k
0 if j , k

• G (MNc,Nc (C), ones(N c)) is a complex-valued variable that multiplies the potential element-by-element, lead-
ing to the following time-dependent potential

V j,k(t, x, y) = G(j, k)TimePotential{ j, k}(t, x, y)

for j, k ∈ {1, ...,Nc}.

To define a quadratic potential with a time-dependent intensity (see Table 4): V(t, x) = (1
2 + cos(t))|x|2, its expres-

sion is first given and the Physics2D structure is modified through the TimePotential Var2d function call.

Example Timepotential = @(t,x,y) (1/2+cos(t)).*(x.^2 + y.^2)

Physics2D = TimePotential Var2d(Method, Physics2D, Example Timepotential);

Table 4. An example of how to use the TimePotential Var2d function.

4.3. The StochasticPotential Var2d function

Physics2D = StochasticPotential Var2d(Method, Physics2D, StochasticPotential, G ,

StochasticProcess);

Table 5. The StochasticPotential Var2d function.

It is possible to include a stochastic potential operator in the physical problem, i.e. a potential defined by a noise ẇt.
The StochasticPotential Var2d function defines the stochastic potential operator (i.e. V(ẇt, x)) in the problem
by modifying the Physics2D structure. It must be provided with the Method and Physics2D structures and considers
the optional arguments

• StochasticPotential: If a function StochasticPotential in F(R+,MNy,Nx (R)2;MNy,Nx (C)) is given, the
physical stochastic potential is defined as follows, for each j, k ∈ {1, ...,Nc},

V j,k(ẇt, x, y) =

{
StochasticPotential(ẇ(t), x, y) if j = k
0 if j , k

If StochasticPotential is a cell array of functions in

CNc,Nc {F(R+,MNy,Nx (R)2;MNy,Nx (C))},
14

/ Computer Physics Communications 00 (2015) 1–29 15

then the potential is
V j,k(ẇt, x, y) = StochasticPotential{ j, k}(ẇt, x, y)

for j, k ∈ {1, ...,Nc}. The default argument is quadratic potential2d

V j,k(ẇt, x, y) =

{ 1
2 (x2 + y2) if j = k
0 if j , k .

• G (MNc,Nc (C), ones(N c)) is a complex-valued variable that multiplies each component of the potential

V j,k(ẇt, x, y) = G(j, k)StochasticPotential{ j, k}(ẇt, x, y)

for j, k ∈ {1, ...,Nc}.

• StochasticProcess is a function corresponding to (wt)t∈R+ when defining the StochasticPotential func-
tion. The StochasticPotential function is computed by using a scalar value corresponding to ẇt.

For example, to define V(ẇt, x) = 1/2(x2ẇt +y2), where (wt)t∈R+ is a brownian motion, we first compute a brownian
motion by using the Brownian Process2d function which generates such a stochastic process. We provide the
resulting GPELab code in Table 4 where we simulate a brownian motion and then we modify the Physics2D structure
by using the StochasticPotential Var2d function.

Brownian = Brownian Process2d(Method);

Physics2D = StochasticPotential Var2d(Method, Physics2D, ...

@(w,x,y) (1/2)*(x.^2*w + y.^2), [] , Brownian);

Table 6. How to use the StochasticPotential Var2d function.

4.4. Further options before launching the simulation
The initial data can be defined by using the InitialData Var2d function but can also be the result of the

numerical computation of a stationary state by using GPELab. The outputs of a calculation are fixed through the
OutputsINI Var2d function and are computed like for the stationary case (by using the variable Evo outputs, see
section 7.4.1 in [8], the number of iterations corresponding to the number of time steps). We also need to build the
Print and Figure structures (by using the Print Var2d and Figure Var2d functions, respectively, see sections
7.4.2 and 7.2.3 in [8]). Finally, the GPELab2d function is called to launch the simulation. We refer to [8] (section 7)
for further details about these functions and variables.

5. Examples of computations

5.1. Collision of two bright solitons for a system of GPEs in 1d
This first example consists in computing the dynamics of two bright solitons for a system of GPEs with coupled

cubic nonlinearities in 1d [52]. We define the following system of GPE
i∂tψ1(t, x) = −

1
2

∆ψ1(t, x) −
[
α1|ψ1(t, x)|2 + (α1 + 2α2)|ψ2(t, x)|2

]
ψ1(t, x), t > 0, ∀x ∈ R,

i∂tψ2(t, x) = −
1
2

∆ψ2(t, x) −
[
α1|ψ2(t, x)|2 + (α1 + 2α2)|ψ1(t, x)|2

]
ψ2(t, x), t > 0, ∀x ∈ R,

ψ1(0, x) = ψ1,0(x) and ψ2(0, x) = ψ2,0(x),

with α1 = 0.25 and α2 = −0.1965. We begin by building the Method and Geometry1D structures. We consider the
ReSP scheme for two components, a time step δt := 10−2 and a final time of computation T = 25. The grid for the
spectral method uses 211+1 points on the interval]−40, 40[(see Table 7). We know that the default dispersion operator
is the Laplace operator and we only need to define the coupled nonlinearities. Therefore, we build the Physics1D

15

/ Computer Physics Communications 00 (2015) 1–29 16

structure with the correct coefficients and then add the default dispersion and the nonlinear operator to the physics of
the problem (see Table 8). To simulate a bright soliton, we start with the initial data

ψ1,0(x) =

√
2
α1

b`sech(b`(x − x`)) exp
(
i
c`
2

x + n`
)

and ψ2,0(x) =

√
2
α1

brsech(br(x − xr)) exp
(
i
cr

2
x + nr

)
,

for b` =

√
n` +

c2
`

4 , br =

√
nr +

c2
r

4 , c` = 0.15, cr = −0.15, n` = 0.03, nr = 0.1, x` = −15 and xr = 0. We use the
Geometry1D structure to obtain the mesh grid through the variable X and compute the initial data (see Table 9). We
print out the informations related to our computation in the command window every 15 iterations and draw the square
of the amplitude of the solution. In addition, we also compute the position of the soliton through the formula

< x >=

∫
R

x|ψ(t, x)|2dx, (5.39)

as an output with the name ’Position of the soliton’ every 10 iterations. Furthermore, we save the solution
during the simulation. The resulting code is given in Table 10. At the end of the simulation, we obtain the informations
about the soliton by using the Outputs structure (like the soliton position). We can use Draw Timesolution1d to
draw the evolution of the modulus of each solution and print out the positions by using the plot Matlab function (see
Table 11). We report the trajectories of the solitons on figures 1(a)-1(b) (where a splitting of the second soliton after
the collision occurs) and the position of each soliton on figures 1(c)-1(d).

Computation = ’Dynamic’;

Ncomponents = 2;

Type = ’Relaxation’;

Deltat = 1e-2;

Stop time = 25;

Method = Method Var1d(Computation,Ncomponents, Type, Deltat, Stop time);

xmin = -40;

xmax = 40;

Nx = 2^11+1;

Geometry1D = Geometry1D Var1d(xmin,xmax, Nx);

Table 7. Building the Method and Geometry1D structures to compute the initial data.

Delta = 1;

Beta = 1;

alpha 1 = 0.25;

alpha 2 = -0.1965;

Physics1D = Physics1D Var1d(Method, Delta, Beta);

Physics1D = Dispersion Var1d(Method, Physics1D);

Coupled NL{1,1} = @(Phi,X) alpha 1*abs(Phi{1}).^2 + (alpha 1+2*alpha 2)*abs(Phi{2}).^2;

Coupled NL{1,2} = @(Phi,X) 0;

Coupled NL{2,1} = @(Phi,X) 0;

Coupled NL{2,2} = @(Phi,X) alpha 1*abs(Phi{2}).^2 + (alpha 1+2*alpha 2)*abs(Phi{1}).^2;

Physics1D = Nonlinearity Var1d(Method, Physics1D, Coupled NL);

Table 8. Setting the Physics1D structure and adding the nonlinear operator.

5.2. Dynamics of a rotating Bose-Einstein condensate perturbed by a random gaussian potential in 2d
We consider now the case of the dynamics of a 2d single-component GPE with a cubic nonlinearity, a rotating

operator and a random potential. The random potential is a gaussian potential with a random intensity which creates
16

/ Computer Physics Communications 00 (2015) 1–29 17

c l = 1.2;

n l = 0.03;

b l = sqrt(n l+c l^2/4);

X l = -15;

X = Geometry1D.X;

Phi 0{1} = sqrt(2/abs(alpha 1))*b l*sech(b l*(X-X l)).*exp(1i*c l*X/2+ n l);

c r = -0.5;

n r = 0.1;

b r = sqrt(n r+c r^2/4);

X r = 0;

X = Geometry1D.X;

Phi 0{2} = sqrt(2/abs(alpha 1))*b r*sech(b r*(X-X r)).*exp(1i*c r*X/2+ n r);

Table 9. Building the initial data.

Solution save = 1;

Outputs iterations = 10;

Output function{1} = @(Phi,X,FFTX) Geometry1D.dx*sum(X.*abs(Phi).^2);

Output name{1} = ’Position of the soliton’;

Outputs = OutputsINI Var1d(Method,Outputs iterations,Solution save,Output function,...

Output name);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var1d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab1d(Phi 0,Method,Geometry1D,Physics1D,Outputs,[],Print);

Table 10. Setting the outputs and the Print structure then launching the simulation.

Draw Timesolution1d(Outputs,Method,Geometry1D,Figure Var1d);

figure(3)

Time = [0:0.1:25];

plot(Time, Outputs.User defined local{1,1})

xlabel(’Time’)

ylabel(’Position of Psi 1’)

figure(4)

plot(Time, Outputs.User defined local{2,1})

xlabel(’Time’)

ylabel(’Position of Psi 2’)

Table 11. Plotting the evolution of the soliton position.

sound waves in the condensate. Our goal is to observe the interaction between the sound waves and the vortices [51].
We first compute a ground state for the deterministic GPE with a quadratic potential and a cubic nonlinearity

i∂tψ(t, x, y) = −
1
2

∆ψ(t, x, y) +
1
2

(|x|2 + |y|2)ψ(t, x, y) + β|ψ(t, x, y)|2ψ(t, x, y) + iΩ(x∂y − y∂x)ψ(t, x, y),

with β = 1000 and Ω = 0.6. We build the Method and Geometry2D structures and consider the BESP scheme [8, 9]
for the stationary state computation with δt = 0.5 and the (weak) stopping criterion ε = 10−8. The computational box
is O =] − 10, 10[2 for J = K = 28 grid points (see Table 12). Thanks to Table 13, the physics is built by using the
Potential Var2d, Nonlinearity Var2d, Gradientx Var2d and Gradienty Var2d functions. The initial wave
function is the Thomas-Fermi approximation which is fixed in GPELab by using the InitialData Var2d function

17

/ Computer Physics Communications 00 (2015) 1–29 18

(a) Evolution of |ψ1 |. (b) Evolution of |ψ2 |.

0 5 10 15 20 25
−160

−140

−120

−100

−80

−60

−40

−20

0

20

40

Time

P
o
s
it
io

n
 o

f
P

s
i 1

(c) Position of ψ1 during the simulation.

0 5 10 15 20 25
−30

−20

−10

0

10

20

30

Time

P
o
s
it
io

n
 o

f
P

s
i 2

(d) Position of ψ2 during the simulation.

Figure 1. Collision of two bright solitons for a system of GPEs in 1d.

(see Table 14). To launch the computation, the defaults Outputs (respectively Print) structure is first initialized by
using the OutputsINI Var2d (respectively Print Var2d) function. Next, the GPELab2d function is called and the
ground state is stored in the variable Phi 1 (see Table 15). At the end of the computation, we obtain the ground state
whose modulus is depicted in Figure 2.

We consider now a random gaussian potential in the GPE and simulate the nonlinear dynamics of the BEC. We
first rebuild the Method structure for this dynamical problem. We use a TSSP scheme with δt := 10−3 for a maximal
time of computation T = 1 (see Table 16). The random gaussian potential is defined by

V(t, x) = V0e−|x−x0 |
2/2`2

ẇt,

where (ẇt)t∈R+ is a white noise. We first compute a brownian motion (wt)t∈R+ and then add the stochastic potential
to the Physics2D structure by using the Brownian Process2d GPELab function (see Table 17). We next set the
outputs, the printing informations (Table 18), and then launch the simulation. At the end of the simulation, we draw
some snapshots of the modulus of the BEC and observe the propagation of sound waves in the rotating Bose-Einstein
condensate (see Figures 3(a)-3(d)).

18

/ Computer Physics Communications 00 (2015) 1–29 19

Computation = ’Ground’;

Ncomponents = 1;

Type = ’BESP’;

Deltat = 1e-1;

Stop time = [];

Stop crit = {’MaxNorm’,1e-10};

Max iter= 6e4;

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time ,

Stop crit,Max iter);

xmin = -10;

xmax = 10;

ymin = -10;

ymax = 10;

Nx = 2^8+1;

Ny = 2^8+1;

Geometry2D = Geometry2D Var2d(xmin,xmax, ymin,ymax, Nx, Ny);

Table 12. Building the Method and Geometry2D structures for the computation of a stationary state.

Delta = 0.5;

Beta = 1000;

Omega = 0.52;

Physics2D = Physics2D Var2d(Method,Delta,Beta,Omega);

Physics2D = Potential Var2d(Method, Physics2D, @(x,y) (1/2)*(x.^2+y.^2));

Physics2D = Nonlinearity Var2d(Method, Physics2D, @(phi,x,y) abs(phi).^2);

Physics2D = Gradientx Var2d(Method, Physics2D, @(x,y) -1i*Omega*y);

Physics2D = Gradienty Var2d(Method, Physics2D, @(x,y) 1i*Omega*x);

Table 13. Setting the Physics2D structure to compute the stationary state.

InitialData choice = 2 ;

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D,InitialData choice);

Table 14. Initialization by the Thomas-Fermi approximation.

Outputs = OutputsINI Var2d(Method);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

[Phi 1,Outputs]= GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 15. Launching the computation of the ground state.

5.3. Dynamics of a Rydberg-dressed Bose-Einstein condensate in 2d

The aim of this third example is to compute the dynamics of a two-dimensional quantum crystal [30]. We indeed
consider the 2d single-component GPE with a cubic nonlocal nonlinearity and a potential given by

i∂tψ(t, x, y) = −
1
2

∆ψ(t, x, y) + V(x, y)ψ(t, x, y) + α(
∫
R2

|ψ(t, x̃, ỹ)|2

1 + ((x − x̃)2 + (y − ỹ)2)3 dx̃dỹ)ψ(t, x, y). (5.40)

19

/ Computer Physics Communications 00 (2015) 1–29 20

Figure 2. Ground state computed with GPELab by using the parameters from section 5.2.

Computation = ’Dynamic’;

Ncomponents = 1;

Type = ’Splitting’;

Deltat = 1e-3;

Stop time = 1;

Stop crit = [];

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

Table 16. Building the Method structure for a dynamical problem.

X 0 = 0;

Y 0 = 0;

d = 4;

V 0 = 2;

Brownian = Brownian Process2d(Method);

Physics2D = StochasticPotential Var2d(Method, Physics2D, @(W,X,Y)

V 0*exp(-((X-X 0).^2+(Y-Y 0).^2)/2*d^2).*W, [], @(t,X,Y) Brownian(t));

Table 17. Adding the random potential.

Save Solution = 1;

Outputs = OutputsINI Var2d(Method,Save Solution);

Printing = 1;

Evo = 10;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab2d(Phi 1,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 18. Printing instructions.

Our experiment consists in first computing the ground state of the previous equation with a quadratic-plus double-well
potential

V(x, y) =
ω2

2

(
x2 + y2

)
+ V0e−

x2

2d2 , (5.41)

20

/ Computer Physics Communications 00 (2015) 1–29 21

(a) Solution at time t = 0.5. (b) Solution at time t = 1.

(c) Solution at time t = 1.5. (d) Solution at time t = 2.

Figure 3. Evolution of a Bose-Einstein condensate perturbed by a random gaussian potential.

with ω = 5, V0 = 750 and d = 0.7. This ground state will be used as an initial data. Then, we set the double-well
potential to zero (V0 = 0) and observe the dynamics of the quantum crystal.

In equation (5.40), the nonlocal nonlinearity takes into account the van der Waals interaction between the Rydberg-
dressed ground-states atoms of the BEC and writes [30]

F(ψ) = α

∫
Rd

UvdW(x − y)|ψ(t, y)|2dy = α

∫
Rd

R6|ψ(t, y)|2

R6 + |x − y|6
dy,

where α ∈ R is an interaction constant and R ∈ R+ is the blockade radius. We remark that this kind of interaction can
be numerically computed efficiently by using FFT and iFFT through the following formula

F(ψ) = αR F −1
ξ

(
ÛvdW(Rξ) |̂ψ|2(ξ)

)
(x), (5.42)

where ÛvdW is the Fourier transform of the van der Waals interaction potential UvdW and is given by [30]

ÛvdW(ξ) =

(
2π2

3

) (
e−ξ/2

ξ

) (
e−ξ/2 − 2 sin(π/6 −

√
3ξ/2)

)
, (5.43)

with ξ = |ξ| (the continuous Fourier covariable ξ is defined by ξ = (ξ1, ξ2) with respect to (x, y)). An asymptotic
analysis of the previous formula enables us to obtain that lim

|ξ|→0
ÛvdW(ξ) = 2π2

3 .

21

/ Computer Physics Communications 00 (2015) 1–29 22

We first compute a ground state for equation (5.40) with α = 20000. We build the Method and Geometry2D

structures and consider the BESP scheme [8, 9] for the stationary state computation with δt = 0.01 and the (weak)
stopping criterion ε = 10−6. The computational box is O =] − 15, 15[2 for J = K = 29 grid points (see Table 19).
Then, we define each operator from equation (5.40) in our script and integrate them in the Physics2D structure. In
order to implement the nonlocal nonlinearity arising in the GPE , we use the expressions (5.42) and (5.43) to define
the RydBergInteraction2d function given in Table 20 which enables us to numerically compute the nonlinear term
via FFT and iFFT. Let us remark that the implementation of the Fourier transform of the Green kernel is not singular
at ξ| = 0 in Table 20 since we replace the singular values with R 2π2

3 . With the help of the FFTNonlinearity Var2d

function, we add the nonlinear operator to the Physics2D structure. Concerning the potential and the dispersion
operators, they are handled in the same way as in subsection 5.2. The resulting code is given in Table 21. The
initial wave function is a gaussian which is defined in GPELab by using the InitialData Var2d function (see Table
22). To launch the computation, the defaults Outputs (respectively Print) structure is first initialized by using the
OutputsINI Var2d (respectively Print Var2d) function (see Table 23). Next, the GPELab2d function is called and
the ground state is stored in the variable Phi 1 (see Table 15). At the end of the computation, we obtain the ground
state whose modulus is depicted in Figure 4.

We can now launch the dynamical simulation. We first modify the Method structure in order to use the ReSP
scheme with a time step δt := 10−3 and a final time of computation T = 5 (see Table 24). We redefine the Physics2D
structure to remove the double-well potential in Table 25. We next set the outputs, the printing informations (Table
26), and then launch the simulation. At the end of the simulation, we retrieve, via the Outputs structure, the solution
at different times and draw the evolution of the Rydberg-dressed BEC (see Figures 5(a)-5(d)). After the collision
between the two parts of the quantum crystal, we can see some interference patterns as well as some turbulence.
Then, finally, the BEC stabilizes to a new crystal structure.

Computation = ’Ground’;

Ncomponents = 1;

Type = ’BESP’;

Deltat = 1e-2;

Stop time = [];

Stop crit = {’Energy’,1e-6};

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

xmin = -15;

xmax = 15;

ymin = -15;

ymax = 15;

Nx = 2^9+1;

Ny = 2^9+1;

Geometry2D = Geometry2D Var2d(xmin,xmax, ymin,ymax, Nx, Ny);

Table 19. Building the Method and Geometry2D structures for the computation of a stationary state.

function Dipolar2d = RydbergInteraction2d(R0,phi,fftx,ffty)

q = R0*sqrt(fftx.^2+ffty.^2);

K = R0*(2*pi^2/3)*(exp(-q/2)./q).*(exp(-q/2)-2*sin(pi/6-sqrt(3)/2*q));

K(isinf(K)) = R0*(2*pi^2/3);

Dipolar2d = (1/2)*real(ifft2(K.*fft2(abs(phi).^2)));

Table 20. The function RydbergInteraction2d used to compute the nonlocal nonlinearity from equation (5.40).

22

/ Computer Physics Communications 00 (2015) 1–29 23

Delta = 0.5;

Beta = 20000;

Physics2D = Physics2D Var2d(Method,Delta,Beta);

omega = 5;

V 0 = 750;

d = 0.7;

Physics2D = Potential Var2d(Method, Physics2D, @(x,y) (1/2)*(x.^2+y.^2) +...

V 0*exp(-x.^2/(2*d^2)));

R0 = 0.8;

Physics2D = Nonlinearity Var2d(Method, Physics2D, @(phi,x,y,fftx,ffty)

RydbergInteraction2d(R0,phi,fftx,ffty));

Table 21. Setting the Physics2D structure to compute the stationary state.

InitialData choice = 1 ;

Phi 0 = InitialData Var2d(Method, Geometry2D, Physics2D,InitialData choice);

Table 22. Initialization by a gaussian function.

Outputs = OutputsINI Var2d(Method);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

[Phi 1,Outputs]= GPELab2d(Phi 0,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 23. Launching the computation of the ground state.

Figure 4. Ground state computed with GPELab by using the parameters from section 5.3.

5.4. Dynamics of a superfluid with a random initial data in 3d

The third and last example is related to the nonlinear dynamics of a turbulent superfluid [34]. We want to simulate
the dynamics of the following nonlinear Schrödinger equation

i∂tψ(t, x, y, z) = −
1
2

∆ψ(t, x, y, z) + β|ψ(t, x, y, z)|2ψ(t, x, y, z), t > 0, (5.44)

23

/ Computer Physics Communications 00 (2015) 1–29 24

Computation = ’Dynamic’;

Ncomponents = 1;

Type = ’Relaxation’;

Deltat = 1e-3;

Stop time = 5;

Stop crit = [];

Method = Method Var2d(Computation,Ncomponents, Type, Deltat, Stop time , Stop crit);

Table 24. Redefining the Method structure for a dynamical problem.

Delta = 0.5;

Beta = 20000;

Physics2D = Physics2D Var2d(Method,Delta,Beta);

omega = 5;

Physics2D = Potential Var2d(Method, Physics2D, @(x,y) (1/2)*(x.^2+y.^2));

R0 = 0.8;

Physics2D = Nonlinearity Var2d(Method, Physics2D, @(phi,x,y,fftx,ffty)

RydbergInteraction2d(R0,phi,fftx,ffty));

Table 25. Setting the Physics2D structure without the double-well potential to simulate the dynamics.

Save Solution = 1;

Outputs = OutputsINI Var2d(Method,Save Solution);

Printing = 1;

Evo = 10;

Draw = 1;

Print = Print Var2d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab2d(Phi 1,Method,Geometry2D,Physics2D,Outputs,[],Print);

Table 26. Printing instructions.

with an initial data corresponding to a superfluid with a uniform density and a random phase. In this simulation, we
consider a splitting scheme with a time step δt = 10−3 and the computational domain O =]− 2, 2[3, with J = K = L =

27 grid points. We build the Method and Geometry2D structures (see Table 27). We consider now the 3d GPE (5.44)
for β = 0.001 (see Table 28). Following a procedure similar to [34], we set the initial data as

ψ0(x, y, z) = eiφ(x,y,z),

where φ is a random gaussian field with a covariance function given by c(x, y, z) = ae−(x2+y2+z2)/2d2
, with a = 1 and

d = 0.5. We compute φ with the help of the Stationary Gaussian Field3d function (see Table 31). Then, we
define the Outputs structure so that we compute the mean momentum < pj > j=1,2,3 of the BEC (see Table 32)

< pj >=

∫
R3
ψ(t, x)∗∂x jψ(t, x)dx.

Finally, the Print structure is defined and the GPELab3d function is called. We print the informations every 10
iterations, draw the modulus (by using isovalues) and the phase (by using slices) (see Table 33). At the end of
the simulation, we draw the 10−6-isovalues of the modulus of the solution at time T = 1 without transparency (by
setting alpha = 1) (see Table 34). This leads to Figures 6(a)-6(b) where, in particular, we observe some vortices
filamentation.

24

/ Computer Physics Communications 00 (2015) 1–29 25

(a) Solution at time t = 1. (b) Solution at time t = 1.5.

(c) Solution at time t = 2. (d) Solution at time t = 5.

Figure 5. Collision in a Rydberg-dressed Bose-Einstein condensate.

(a) 10−6-isovalues of the modulus of the solution at time t = 1. (b) Slice of the phase of the solution at time t = 1.

Figure 6. Turbulence in a superfluid: modulus and phase of the solution at the end of the simulation.

25

/ Computer Physics Communications 00 (2015) 1–29 26

Computation = ’Dynamic’;

Ncomponents = 1;

Type = ’Splitting’;

Deltat = 1e-3;

Stop time = 1;

Stop crit = [];

Method = Method Var3d(Computation,Ncomponents, Type, Deltat, Stop time,Stop crit);

xmin = -2;

xmax = 2;

ymin = -2;

ymax = 2;

zmin = -2;

zmax = 2;

Nx = 2^7+1;

Ny = 2^7+1;

Nz = 2^7+1;

Geometry3D = Geometry3D Var3d(xmin,xmax, ymin,ymax, Nx, Ny);

Table 27. Building the Method and Geometry3D structures for the computation of the initial data.

Delta = 1;

Beta = 1e-3;

Physics3D = Physics3D Var3d(Method,Delta,Beta);

Physics3D = Potential Var3d(Method, Physics3D);

Physics3D = Nonlinearity Var3d(Method, Physics3D);

Table 28. Building and defining the Physics3D structure for the initial data.

InitialData choice = 2 ;

Phi 0 = InitialData Var3d(Method, Geometry3D, Physics3D,InitialData choice);

Table 29. Initialization by the Thomas-Fermi approximation.

Outputs iterations = 10;

Outputs save = 0:

Outputs = OutputsINI Var3d(Method,Outputs iterations,Outputs save);

Printing = 1;

Evo = 15;

Draw = 1;

Print = Print Var3d(Printing,Evo,Draw);

[Phi 1,Outputs]= GPELab3d(Phi 0,Method,Geometry3D,Physics3D,Outputs,[],Print);

Table 30. Launching the computation of a stationary state to provide an initial data.

A = 1;

d = 0.5;

Random Phase = Stationary Gaussian Field3d(Geometry3D,...

@(X,Y,Z) A*exp(-(X.^2 + Y.^2 + Z.^2)/(2*d^2)));

Phi 1{1} = exp(-2i*pi*Random Phase);

Table 31. Adding a random phase to the initial state.

26

/ Computer Physics Communications 00 (2015) 1–29 27

Solution save = 0;

Outputs iterations = 10;

Output function{1} = @(Phi,X,Y,Z,FFTX,FFTY,FFTZ) Geometry3D.dx*Geometry3D.dy*...

Geometry3D.dz*sum(sum(sum(ifftn(FFTX.*fftn(Phi)).*conj(Phi))));

Output function{2} = @(Phi,X,Y,Z,FFTX,FFTY,FFTZ) Geometry3D.dx*Geometry3D.dy*...

Geometry3D.dz*sum(sum(sum(ifftn(FFTY.*fftn(Phi)).*conj(Phi))));

Output function{3} = @(Phi,X,Y,Z,FFTX,FFTY,FFTZ) Geometry3D.dx*Geometry3D.dy*...

Geometry3D.dz*sum(sum(sum(ifftn(FFTZ.*fftn(Phi)).*conj(Phi))));

Output name{1} = ’BEC Momentum X’;

Output name{2} = ’BEC Momentum Y’;

Output name{3} = ’BEC Momentum Z’;

Outputs = OutputsINI Var3d(Method,Outputs iterations,Solution save,...

Output function,Output name);

Table 32. Setting the Outputs structure for the dynamical problem.

Printing = 1;

Evo = 10;

Draw = 1;

Print = Print Var3d(Printing,Evo,Draw);

[Phi,Outputs]= GPELab3d(Phi 1,Method,Geometry3D,Physics3D,Outputs,[],Print);

Table 33. Launching the simulation with the GPELab3d function.

View = 3;

Isovalue = 1e-6;

Aspect = 1;

Figure = Figure Var3d(View,Isovalue,Aspect);

Draw Solution3d(Phi,Method,Geometry3D,Figure);

Table 34. Drawing 10−6-isovalues of the modulus with no transparency.

6. Conclusion

This second paper presents the functionalities of GPELab to compute the deterministic and stochastic nonlinear
dynamics of BECs modeled through the GPEs. GPELab includes some robust and efficient time-splitting and relax-
ation schemes in time with spectral accuracy in space (related to FFTs) for a large class of systems of GPEs. After
presenting the specific GPELab functions for the nonlinear dynamics, a few 1d-2d-3d examples show how to build
advanced GPELab scripts.

Acknowledgements. This work was partially supported by the French ANR grant MicroWave NT09 460489 (“Pro-
gramme Blanc” call) and ANR-12-MONU-0007-02 BECASIM (Modèles Numériques call).

References

[1] F. Kh. Abdullaev, B. B. Baizakov, and V. V. Konotop. Dynamics of a Bose-Einstein condensate in optical trap. In Nonlinearity and Disorder:
Theory and Applications, volume 45 of NATO Science Series, pages 69–78. Springer Netherlands, 2001.

[2] F. Kh. Abdullaev, J. C. Bronski, and R. M. Galimzyanov. Dynamics of a trapped 2d Bose-Einstein condensate with periodically and randomly
varying atomic scattering length. Physica D: Nonlinear Phenomena, 184(1-4):319 – 332, 2003.

[3] F. Kh. Abdullaev, J. C Bronski, and G. Papanicolaou. Soliton perturbations and the random Kepler problem. Physica D: Nonlinear Phenom-
ena, 135(3-4):369 – 386, 2000.

[4] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of vortex lattices in Bose-Einstein condensates. Science,
292(5516):476–479, 2001.

27

/ Computer Physics Communications 00 (2015) 1–29 28

[5] A. Aftalion and P. Mason. Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation.
Phys. Rev. A, 88:023610, Aug 2013.

[6] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of Bose-Einstein condensation in a dilute
atomic vapor. Science, 269(5221):198–201, 1995.

[7] X. Antoine, W. Bao, and C. Besse. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations.
Computer Physics Communications, 184(12):2621 – 2633, 2013.

[8] X. Antoine and R. Duboscq. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions. Computer
Physics Communications, 185(11):2969–2991, 2014.

[9] X. Antoine and R. Duboscq. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and
strongly interacting Bose-Einstein condensates. Journal of Computational Physics, 258C:509–523, 2014.

[10] X. Antoine and R. Duboscq. Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity.
in Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, CEMPI Subseries, 1st Volume, Lecture Notes in
Mathematics. Springer, to appear, 2015.

[11] W. Bao. Ground states and dynamics of multicomponent Bose-Einstein condensates. Multiscale Modeling & Simulation, 2(2):210–236,
2004.

[12] W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic and Related Models, 6(1):1–135,
2013.

[13] W. Bao, Y. Cai, and Wang H. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates.
J. Comput. Phys., 229:7874–7892, 2010.

[14] W. Bao, I-L. Chern, and F.Y. Lim. Efficient and spectrally accurate numerical methods for computing ground and first excited states in
Bose-Einstein condensates. Journal of Computational Physics, 219(2):836–854, 2006.

[15] W. Bao, Q. Du, and Y. Zhang. Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation. SIAM
Journal on Applied Mathematics, 66(3):758–786, 2006.

[16] W. Bao, D. Jaksch, and P. A. Markowich. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. Journal of
Computational Physics, 187(1):318–342, 2003.

[17] W. Bao, Q. Marahrens, Q. Tang, and Zhang Y. A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein
condensates via a rotating Lagrangian coordinate. SIAM J. Sci. Comput., 35:A2671–A2695, 2013.

[18] W. Bao and J. Shen. A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates. SIAM J. Sci.
Comput., 26:2010–2028, 2005.

[19] W. Bao and H. Wang. An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates.
Journal of Computational Physics, 217(2):612–626, 2006.

[20] C. Besse. A relaxation scheme for the nonlinear Schrödinger equation. SIAM Journal on Numerical Analysis, 42(3):934–952, 2004.
[21] K. B. Davis, M-O. Mewes, M. R. van Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in

a gas of sodium atoms. Physical Review Letters, 75(22):3969–3973, 1995.
[22] R. Duboscq. Analyse et simulation d’équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein

en rotation. PhD thesis, Université de Lorraine, Novembre 2013.
[23] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak. Bose-Einstein condensation of atomic

hydrogen. Physical Review Letters, 81:3811–3814, Nov 1998.
[24] J. Garnier, F. Kh. Abdullaev, and B. B. Baizakov. Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity.

Physical Review A, 69:053607, May 2004.
[25] M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas. Dynamics of noise-induced heating in atom traps. Physical Review A,

58:3914–3921, Nov 1998.
[26] S. Giovanazzi, A. Görlitz, and T. Pfau. Tuning the dipolar interaction in quantum gases. Phys. Rev. Lett., 89:130401, Sep 2002.
[27] K. Góral, K. Rza̧żewski, and T. Pfau. Bose-Einstein condensation with magnetic dipole-dipole forces. Physical Review A, 61:051601, Mar

2000.
[28] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau. Bose-Einstein condensation of chromium. Physical Review Letters, 94:160401,

Apr 2005.
[29] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento Series 10, 20(3):454–477, 1961.
[30] C.-H. Hsueh, T.-C. Lin, T.-L. Horng, and W. C. Wu. Quantum crystals in a trapped rydberg-dressed bose-einstein condensate. Phys. Rev. A,

86:013619, Jul 2012.
[31] B. Jackson, J. F. McCann, and C. S. Adams. Vortex formation in dilute inhomogeneous Bose-Einstein condensates. Physical Review Letters,

80:3903–3906, 1998.
[32] K. Kasamatsu, M. Tsubota, and M. Ueda. Giant hole and circular superflow in a fast rotating Bose-Einstein condensate. Phys. Rev. A,

66:053606, Nov 2002.
[33] Y. Kawaguchi and M. Ueda. Spinor Bose-Einstein condensates. Physics Reports, 2012.
[34] M. Kobayashi and M. Tsubota. Kolmogorov spectrum of superfluid turbulence: Numerical analysis of the Gross-Pitaevskii equation with a

small-scale dissipation. Physical review letters, 94(6):065302, 2005.
[35] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett.,

78:4713–4716, Jun 1997.
[36] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau. The physics of dipolar bosonic quantum gases. Reports on Progress in Physics,

72(12):126401, 2009.
[37] C. K. Law, H. Pu, and N. P. Bigelow. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett., 81:5257–5261, Dec 1998.
[38] M. Lewin, P. T. Nam, and N. Rougerie. Derivation of Hartree’s theory for generic mean-field Bose systems. arXiv preprint arXiv:1303.0981,

2013.
[39] E. H. Lieb and R. Seiringer. Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Communications in Mathematical Physics,

28

/ Computer Physics Communications 00 (2015) 1–29 29

264(2):505–537, 2006.
[40] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation.

Physical Review Letters, 86(20):4443–4446, 2001.
[41] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred Bose-Einstein condensate. Physical Review Letters,

84(5):806–809, 2000.
[42] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortices in a stirred Bose-Einstein condensate. Journal of Modern Optics,

47(14-15):2715–2723, 2000.
[43] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle. Observation of metastable states in spinor

Bose-Einstein condensates. Phys. Rev. Lett., 82:2228–2231, Mar 1999.
[44] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping Bose-Einstein condensates by

sympathetic cooling. Physical Review Letters, 78:586–589, Jan 1997.
[45] P. Pedri and L. Santos. Two-dimensional bright solitons in dipolar Bose-Einstein condensates. Physical Review Letters, 95:200404, Nov

2005.
[46] C. J. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cambridge University Press, 2002.
[47] L. P. Pitaevskii. Vortex lines in an imperfect bose gas. Soviet Physics JETP-USSR, 13(2), 1961.
[48] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle. Vortex nucleation in a stirred Bose-Einstein condensate. Physical Review

Letters, 87(21):210402, 2001.
[49] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn. Spontaneous symmetry breaking in a quenched ferromag-

netic spinor Bose-Einstein condensate. Nature, 443(7109):312–315, 2006.
[50] T. A. Savard, K. M. O’Hara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Physical Review A, 56:R1095–

R1098, Aug 1997.
[51] T. P. Simula, P. Engels, I. Coddington, V. Schweikhard, E. A. Cornell, and R. J. Ballagh. Observations on sound propagation in rapidly

rotating Bose-Einstein condensates. Physical Review Letters, 94(8):080404, 2005.
[52] W. J. Sonnier and C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Discret.

Contin. Dyn. S., pages 708–718, 2009.
[53] M. Thalhammer. Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM

Journal on Numerical Analysis, 50(6):3231–3258, 2012.
[54] L. Wen, H. Xiong, and B. Wu. Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential. Physical Review A,

82(5):053627, 2010.
[55] X.-Q. Xu and J. H. Han. Spin-orbit coupled Bose-Einstein condensate under rotation. Phys. Rev. Lett., 107:200401, Nov 2011.
[56] R. Zeng and Y. Zhang. Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates. Computer Physics Communications,

180(6):854–860, 2009.
[57] Y. Zhang, W. Bao, and J. Li. Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation. Physica D,

234:49–69, 2007.

29

	Program Summary
	Introduction
	The dimensionless Gross-Pitaevskii equation used in GPELab
	Spectral schemes for the simulation of the dynamics
	Alternate Direction Implicit-Time Splitting pseudo SPectral (ADI-TSSP) schemes
	The Lie ADI-TSSP scheme
	The Strang ADI-TSSP scheme
	Extension of the TSSP schemes to the multi-components case

	Relaxation pseudo SPectral scheme (ReSP)
	Relaxation pseudo SPectral scheme (ReSP) for the rotating GPE
	Extension of the ReSP scheme to the multi-components case

	Integration of a stochastic potential
	The case of the TSSP scheme
	The case of the ReSP scheme

	GPELab functions for the dynamics
	The Method_Var2d function
	The TimePotential_Var2d function
	The StochasticPotential_Var2d function
	Further options before launching the simulation

	Examples of computations
	Collision of two bright solitons for a system of GPEs in 1d
	Dynamics of a rotating Bose-Einstein condensate perturbed by a random gaussian potential in 2d
	Dynamics of a Rydberg-dressed Bose-Einstein condensate in 2d
	Dynamics of a superfluid with a random initial data in 3d

	Conclusion

